![]() |
От пальцевого счета до суперкомпьютеров | |
Ручной этап Механический этап Электромеханический этап Электронный этап Тесты О нас | ||
![]() ![]() ![]() ![]() ![]() |
Логарифмическая линейкаПоявление логарифмовХорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером в начале XVII в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Его "Канон о логарифмах" начинался так: "Осознав, что в математике нет ничего более скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезной ![]() Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако в практической работе их использование имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой. Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе счисления, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений. Так как же работают логарифмы Непера? Слово изобретателю: "Отбросьте числа, произведение, частное или корень которых необходимо найти, и возьмите вместо них такие, которые дадут тот же результат после сложения, вычитания и деления на два и на три". Иными словами, используя логарифмы, умножение можно упростить до сложения, деление превратить в вычитание, а извлечение квадратного и кубического корней - в деление на два и на три соответственно. Например, чтобы перемножить числа 3,8 и 6,61, определим с помощью таблицы и сложим их логарифмы: 0,58+0,82=1,4. Теперь найдем в таблице число, логарифм которого равен полученной сумме, и получим почти точное значение искомого произведения: 25,12. И никаких ошибок! Логарифмическая линейкаЛогарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму. Логарифмическая линейка - Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел: lg(x) + lg(y) = lg(xy) Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат: lg(x) - lg(y) = lg(x/y) С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек - два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы. Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию. ![]() Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется, соответственно, сложением и вычитанием их логарифмов. Вплоть до 1970-х гг. логарифмические линейки были так же распространены, как пишущие машинки и мимеографы. Ловким движением рук инженер без труда перемножал и делил любые числа и извлекал квадратные и кубические корни. Чуть больше усилий требовалось для вычисления пропорций, синусов и тангенсов. Украшенная дюжиной функциональных шкал, логарифмическая линейка символизировала сокровенные тайны науки. На самом деле, основную работу выполняли всего две шкалы, поскольку практически все технические расчеты сводились к умножению и делению. на начало |
![]() Отправляясь на Луну, американские астронавты брали с собой линейку Pickett N600-ES в качестве запасного калькулятора. ![]() |